skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gonzalez, Emmanuel Anaya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While AI programming tools hold the promise of increasing programmers’ capabilities and productivity to a remarkable degree, they often exclude users from essential decision making processes, causing many to effectively “turn off their brains” and over-rely on solutions provided by these systems. These behaviors can have severe consequences in critical domains, like software security. We propose Human-in-the-Loop Decoding, a novel interaction technique that allows users to observe and directly influence LLM decisions during code generation, in order to align the model’s output with their personal requirements. We implement this technique in HILDE, a code completion assistant that highlights critical decisions made by the LLM and provides local alternatives for the user to explore. In a within-subjects study (N=18) on security-related tasks, we found that HILDE led participants to generate significantly fewer vulnerabilities and better align code generation with their goals compared to a traditional code completion assistant. 
    more » « less
    Free, publicly-accessible full text available October 7, 2026
  2. While AI programming tools hold the promise of increasing programmers’ capabilities and productivity to a remarkable degree, they often exclude users from essential decision making processes, causing many to effectively “turn off their brains” and over-rely on solutions provided by these systems. These behaviors can have severe consequences in critical domains, like software security. We propose Human-in-the-Loop Decoding, a novel interaction technique that allows users to observe and directly influence LLM decisions during code generation, in order to align the model’s output with their personal requirements. We implement this technique in HILDE, a code completion assistant that highlights critical decisions made by the LLM and provides local alternatives for the user to explore. In a within-subjects study (N=18) on security-related tasks, we found that HILDE led participants to generate significantly fewer vulnerabilities and better align code generation with their goals compared to a traditional code completion assistant. 
    more » « less
    Free, publicly-accessible full text available October 7, 2026